Insulin-Like Growth Factor-1 Receptor Is Regulated by microRNA-133 during Skeletal Myogenesis

نویسندگان

  • Mian-Bo Huang
  • Hui Xu
  • Shu-Juan Xie
  • Hui Zhou
  • Liang-Hu Qu
چکیده

BACKGROUND The insulin-like growth factor (IGF) signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs), has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved in the regulation of IGF signaling in skeletal myogenesis. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we determined that the cell-surface receptor IGF-1R is directly regulated by a muscle-specific miRNA, microRNA-133 (miR-133). A conserved and functional binding site for miR-133 was identified in the 3'untranslated region (3'UTR) of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not messenger RNA (mRNA) expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation. CONCLUSION/SIGNIFICANCE Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also suggest that miR-133 may be a potential therapeutic target in muscle diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IGF-II is regulated by microRNA-125b in skeletal myogenesis

MicroRNAs (miRNAs) have emerged as key regulators of skeletal myogenesis, but our knowledge of the identity of the myogenic miRNAs and their targets remains limited. In this study, we report the identification and characterization of a novel myogenic miRNA, miR-125b. We find that the levels of miR-125b decline during myogenesis and that miR-125b negatively modulates myoblast differentiation in ...

متن کامل

Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis.

Skeletal muscle possesses a strong ability to regenerate following injury, a fact that has been largely attributed to satellite cells. Satellite cells are skeletal muscle stem cells located beneath the basal lamina of the myofiber, and are the principal cellular source of growth and regeneration in skeletal muscle. MicroRNAs (miRNAs) play key roles in modulating several cellular processes by ta...

متن کامل

Lnc-mg is a long non-coding RNA that promotes myogenesis

Recent studies indicate important roles for long noncoding RNAs (lncRNAs) as essential regulators of myogenesis and adult skeletal muscle regeneration. However, the specific roles of lncRNAs in myogenic differentiation of adult skeletal muscle stem cells and myogenesis are still largely unknown. Here we identify a lncRNA that is specifically enriched in skeletal muscle (myogenesis-associated ln...

متن کامل

EphrinA/EphA signal facilitates insulin-like growth factor-I–induced myogenic differentiation through suppression of the Ras/extracellular signal–regulated kinase 1/2 cascade in myoblast cell lines

Insulin-like growth factor-I (IGF-I) activates not only the phosphatidylinositol 3-kinase (PI3K)-AKT cascade that is essential for myogenic differentiation but also the extracellular signal-regulated kinase (ERK) 1/2 cascade that inhibits myogenesis. We hypothesized that there must be a signal that inhibits ERK1/2 upon cell-cell contact required for skeletal myogenesis. Cell-cell contact-induce...

متن کامل

Bimodal, Reciprocal Regulation of Fibroblast Growth Factor Receptor 1 Promoter Activity by BTEB1/KLF9 during Myogenesis

Expression of the gene encoding fibroblast growth factor receptor 1 (FGFR1) and subsequent FGFR1-mediated cell signaling controls numerous developmental and disease-related processes. The transcriptional regulation of the FGFR1 gene is central to these developmental events and serves as a molecular model for understanding transcriptional control of growth factor receptor genes. The FGFR1 promot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011